Linearly Separable
定义 Definition
linearly separable:线性可分的。指在分类问题中,两类(或多类)数据可以用一条直线(二维)、一个平面(三维)或更高维中的一个超平面完全分开,使不同类别落在分隔面的两侧。(也常用于机器学习/统计学习语境。)
发音 Pronunciation
/ˈlɪniərli ˈsɛp(ə)rəb(ə)l/
例句 Examples
The two classes are linearly separable.
这两类数据是线性可分的。
If the data were linearly separable, a single hyperplane could classify all points correctly, but in practice we often need a nonlinear model or feature mapping.
如果数据是线性可分的,那么一个超平面就能把所有点正确分类;但在实际中我们往往需要非线性模型或特征映射。
词源 Etymology
该短语由 linearly(“以线性的方式”,来自 linear,意为“线的、线性的”)和 separable(“可分离的”,来自拉丁语词根 separare,意为“分开”)组合而成。整体含义即“能够用线性边界分开”。
相关词 Related Words
文学与经典著作 Literary Works
- Pattern Recognition and Machine Learning(Christopher M. Bishop)——讨论线性分类器与可分性概念
- The Elements of Statistical Learning(Hastie, Tibshirani, Friedman)——涉及线性可分、间隔与分类边界
- “The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain”(Frank Rosenblatt)——感知机与线性可分性密切相关
- The Nature of Statistical Learning Theory(Vladimir Vapnik)——SVM与可分性、间隔理论
- Deep Learning(Goodfellow, Bengio, Courville)——在表征学习语境中提及线性可分性作为特征质量指标之一